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Abstract—Public transits, such as buses and subway lines, offer
affordable ride-sharing services and reduce the road network
traffic, thus have significant impacts in mitigating the urban
traffic congestion problem. However, it is non-trivial to evaluate
a new transit plan, such as a new bus route or a new subway
line, of its future ridership prior to actual deployment, since
the travel preferences of passengers along the planned routes
may vary. In this paper, we make the first attempt to model
passengers’ preferences of making various transit choices using
Markov Decision Process (MDP). Moreover, we develop a novel
inverse preference learning algorithm to infer the passengers’
preferences and predict the future human behavior changes, e.g.,
ridership, of a new urban transit plan before its deployment.
We validate our proposed framework using a unique real-world
dataset (from Shenzhen, China) with three subway lines opened
during the data time span. With the data collected from both
before and after the transit plan deployments, Our evaluation
results demonstrated that the proposed framework can predict
the ridership with only 19.8% relative error, which is 23%-51%
lower than other baseline approaches.

Index Terms—Urban Computing, Inverse Reinforcement
Learning, Human-Centric Transit Plan Evaluation

I. INTRODUCTION

With the fast pace of global urbanization, the growth of

urban population has already significantly worsen the urban

traffic congestion problem [1]. By aggregating the urban trip

demands with shared trains and buses, public transits offer

affordable ride-sharing services and reduce the road network

traffic, which in turn mitigate the traffic congestion problem.

Urban public transits, such as city buses and subway passenger

trains, are group travel systems, deployed for general public

and operated on established routes and fixed schedules. The

goal of developing new public transit plans, e.g., a new subway

line or a new bus route/schedule, is to precisely meet the

needs from passengers in urban areas, and attract as many

passengers as possible, to take the new transit lines, from

other transit modes, such as private cars. To achieve such a

design goal, urban transit planners primarily conduct surveys

to collect trip demand data in urban areas, and develop transit

plans that cover the most trip demands. However, survey data

are usually sparse and biased. Moreover, without considering

the passengers’ preferences (in choosing the transit modes and

Fig. 1. Crowd flows of four new subway stations in Shenzhen, China.

routes), a transit plan may lead to unexpected (too large or too

small) ridership, after deploying it.

Taking Shenzhen, China as an example, there were three

subway lines with 63 subway stations opened in 2016. Fig 1

shows dynamic crowd flows of four subway stations along

new subway lines, which count the total number of passengers

going into subway stations within every half an hour. XiaSha,

Baguoling, and ShangSha Station have clear diurnal patterns,

with overall high crowd flows. However, at ShenWanZhan

Station of Line #9, the average crowd flow is about 20
passengers per 30 minutes over the whole day. Meanwhile,

from the taxi trip data, we observe numerous trips from

ShenWanZhan region, both before and after Line #9 was

opened. This indicates that opening the ShenWanZhan subway

station did not successfully attract travelers in that region,

since their travel modes did not change. With such a low

ridership, it was too costly to open the ShenWanZhan subway

station. In fact, it is non-trivial to evaluate the impacts of a

transit deployment plan on future passenger behaviors prior to

actual deployment, since the travel preferences of passengers

along the planned routes may vary.

In this paper, we make the first attempt to investigate how

to characterize the passenger preferences from public transit

trajectory data, and develop a novel approach to predict the

human behavior changes, e.g., ridership, of an urban transit

plan before its deployment. Our contributions are summarized

as follows.

• First, we model the travelers’ trips using Markov Deci-

sion Process (MDP) model, where we consider a traveler,

as an “agent”, completing a trip from origin to destina-
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tion by making a sequence of decisions about transport

modes and routes. Moreover, from real world data, We

extract various decision-making features, that passengers

evaluate when making transit choices, such as travel time,

cost and level-of-convenience.

• Second, we develop a novel inverse learning algorithm to

recover the preference function of passengers from their

historical transit trajectories. With the passenger reward

function, we develop transit plan evaluation framework

to estimate the future human behaviors, i.e., ridership,

crowd flow, after a transit plan is deployed.

• We validate our framework using a unique dataset from

Shenzhen, China, with three subway lines opened dur-

ing the data timespan. This allows us to examine our

transit plan evaluation framework, with data both col-

lected before and after the plan is deployed. Our results

demonstrated that our proposed framework predicts the

ridership with only 19.8% relative error from the ground-

truth, which is 23%-51% lower than baseline approaches.

We will make our unique dataset available to contribute
to the research community.

The rest of the paper is organized as follows. Sec II

defines the problem, describes the data and outlines our tran-

sit evaluation framework. Sec III–V introduce our proposed

methodology on data-preprocessing, data-driven modeling,

and transit plan evaluation. Sec VI presents evaluation results

using a large-scale urban transit trajectory dataset. Finally, we

conclude the paper in Sec VIII.

II. OVERVIEW

In this section, we define the transit plan evaluation problem

describe datasets we use and outline the solution framework.

A. Problem Definition

In a city, its urban public transit system, including buses

and subway lines, naturally forms a directed graph, for which

we refer to as public transit graph (in short, transit graph)

defined as follows.

Definition 1 (Transit Graph). A transit graph G = (V,E)
in a city represents the connections of public transit stops by
the transit lines. Vertex set V is a set of transit nodes, i.e.,
locations of all bus stops and subway stations, and E as the
set of transit edges consists of all the bus routes and subway
lines between transit stops/stations.

Passengers in an urban area are completing trip demands

over time, e.g., commute trips between home and working

place, where we define an urban trip demand as follows. Each

passenger generates a transit trajectory, when taking the public

transit system to complete a trip.

Definition 2 (Trip Demand). A trip demand td of a passenger
indicates the intent of a passenger to travel from a source
location src to a destination location dst from a given starting
time t, which can be represented as a triple td = 〈src, dst, t〉.

Passenger trip demands can be obtained from various data

sources. For example, the transaction data from AFC devices

in buses and subway systems record passenger trip demands at

the level of bus stops and subway stations. Taxi GPS trajectory

data with occupation information include the trip demands for

taxi trips. To complete a trip demand by urban public transit,

the passenger generates a transit trajectory, when traversing

the transit graph.

Definition 3 (Transit Trajectory). A transit trajectory tr of a
passenger trip demand 〈src, dst, t1〉 is a sequence of spatio-
temporal points, that the passenger traverses in the transit
graph. Each spatio-temporal point consists of a transit node
and transit edge, with a time stamp, i.e., �i = (vi, ei, ti), where
vi ∈ V and ei ∈ E.

Clearly, a spatio-temporal point � = (v, e, t) indicates that

the passenger takes a transit line e ∈ E, e.g., bus route

#3, from a transit stop/station v ∈ V at time t. With the

graph representation of the urban public transit system, a new

transit plan, e.g., a new subway line or a new bus route, can

be represented as a graph, with a set of new transit nodes,

connected by the new transit edges.

Definition 4 (Transit Plan). A transit plan ΔG = (ΔV,ΔE)
consists of a set of new transit nodes ΔV , i.e., new bus stops
and subway stations to be built, and a set of new transit edges
ΔE, i.e., new bus routes and subway lines.

Combining the transit plan graph ΔG and the existing

transit graph G yields a new transit graph G′ = (V ′, E′) =
(V ∪ ΔV,E ∪ ΔE), which represents the urban transit con-

nections available for the passengers, if the transit plan ΔG
is deployed.

Problem Definition. Given trip demands TD = {td} of a

city, transit trajectories TR = {tr} of passengers, existing

transit graph G, and a transit plan ΔG, our goal is to

evaluate/predict the ridership and crowd flow at new transit

nodes v ∈ ΔV under G′, i.e., assuming the transit plan is

deployed.

B. Data Description

We use three datasets in our study, including (1) public

transit trajectory data, (2) taxi trajectory data and (3) transit

graph and road map data. For consistency, all these datasets

are aligned with the same time period, i.e., 06/2016–12/2016.

Public transit trajectory data. In Shenzhen, all buses and

subway stations are equipped with automatic fare collection

(AFC) systems , where passengers swipe their smart cards at

AFC devices to get aboard on a bus or enter/leave a subway

station. We collected 7 months of passenger transaction data

from buses and subway stations. Each transaction record

contains five attributes including passenger ID, transaction

type, cost, transaction time, transit station/stop name and

location. The transaction type field indicates if it is an event of

getting on a bus, or leaving/entering a subway station. Most of

trajectories contain 0 to 3 transits and the average of transits is

1.1. These transaction data allow us to extract the trip demands
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Fig. 2. Transit plan evaluation framework

Fig. 3. Map griding

and transit trajectories of passengers taking public transits. We

use public transit trajectory data to extract features and build

the MDP transit model.

Taxi trajectory data. We collected a large-scale taxi trajec-

tory dataset in Shenzhen. These trajectories represent 21, 385
unique taxis in Shenzhen. They are equipped with GPS sets,

which periodically (i.e., roughly every 30 seconds) generate

1, 797, 131, 540 GPS records in total. Each record has six core

attributes including unique plate ID, longitude, latitude, time,

speed and passenger indicator. The passenger indicator field is

a binary value for taxi data, indicating whether a passenger is

on board (with value 1) or not. The taxi trip data are mainly

used to extract features.

Transit Graph and Road Map Data. We retrieve a

bounding box of Shenzhen city through the Google Geocoding

API [2]. The bounding box was defined by latitude from

22.42◦ to 22.81◦ while longitude from 113.75◦ to 114.68◦.

It covers an urban area of about 400 square miles and three

million people. Within this bounding box, we obtain Shenzhen

transit graph, i.e., all 892 bus routes and 8 subway lines,

and road map data from OpenStreetMap [3]. This serves for

feature extracting and providing connection information about

bus stops and subway stations.

C. Solution Framework

Figure 2 provides an overview of our proposed framework,

which consists of three main components: (i) Stage 1 – data
preparation, which divides the urban area into equal size

grids, and aggregates all the transit nodes (bus stops, subway

stations), trip demands, and public transit trajectories into the

grid level; (ii) Stage 2 – data-driven modeling, which models

passenger trips as Markov decision processes, and extract

various decision-making features from data; (iii) Stage 3 –
transit plan evaluation, where we develop a novel inverse

learning algorithm to learn passenger preferences and predict

future ridership for a new transit plan.

III. STAGE 1: DATA PREPROCESSING

Map Griding. There are around 5, 327 bus stops and 167
subway stations in Shenzhen, China. Many of them are popu-

lated very densely, especially in downtown areas. Usually, all

transit options within a certain walking distance (e.g., 500m)

are considered the same by the passengers. Hence, we partition

the urban area into small regions and consider all transit stops

in the same small region as a single aggregated transit stop.

For the ease of implementation, we adopt the griding based

method, which simply partitions the map into equal side-length

grids [4], [5]. Moreover, the griding based method allows

us to adjust the side-length of grids, to better examine and

understand impacts of the grid size. Hence, in Stage 1, our

approach divides the urban area into equal-size grids with a

pre-defined side-length s in kilometers.

The remaining grid set can be represented as a graph, with

grids as nodes, connected by the road network and transit

system. Fig 3 highlights (in light color) those n = 1, 018 grids

covered by the road and transit network in Shenzhen, China.

In Sec VI-D, we present results on evaluating the impacts of

different side-lengths of grids on system performance.

Trip Aggregation. As we aggregate all transit nodes (i.e.,

stops and stations) into grids and each trip demand 〈src, dst, t〉
specifies a source location src, and a destination location dst,
we can aggregate all trip demands to grid pairs, that is, for

all trip demands with src ∈ gi and dst ∈ gj , they will be

considered in the same group with the source grid gi and

destination grid gj . Similarly, we can aggregate the transit

trajectories to grid level trajectories.

IV. STAGE 2: DATA-DRIVEN MODELING

Passengers are making a sequence of decisions when com-

pleting a trip, such as which bus routes and subway line to

take, which stop/station to transfer. Such sequential decision

making processes can be naturally modeled as Markov deci-

sion processes (MDPs). Below, we will introduce some pre-

liminaries of MDPs, and explain how we model the passenger

route choice process as a MDP.

A. Markov Decision Process (MDP)

Markov decision processes (MDPs) [6] provides a mathe-

matical framework for modeling decision making processes,

where outcomes are partly random and partly under the control

of a decision maker, namely, an agent. A MDP is a discrete

time stochastic control process. At each time step, the process

is in some state s, and the agent may choose any action a that

is available at state s, where the agent receives a corresponding

reward R(s, a). The process responds at the next time step by

randomly moving into a new state s′. The probability that
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the process moves into its new state s′ is influenced by the

chosen action. Specifically, it is given by the state transition

function P (s′ | s, a). Hence, an MDP can be represented as

a 5-tuple 〈S,A, P,R, γ〉, where S is a finite set of states and

A is a set of actions. P is the probabilistic transition function

with P (s′ | s, a) as the probability of arriving at state s′ by

executing action a at state s, R : S × A → R is the reward

function, γ ∈ [0, 1] is the discount factor, which represents the

difference in importance between future rewards and present

rewards. Without loss of generality, we set γ = 1 in this work.
A randomized, memoryless policy is a function that specifies

a probability distribution on the action to be executed in each

state, defined as π : S ×A → [0, 1]. The planning problem in

an MDP aims to find a policy π, such that the expected total

reward is maximized, namely,

π∗ = argmax
π∈Π

E
π(

T∑
t=0

γtR(St, At) | S0 ∼ μ0),

where St and At are random variables for the state and action

at the time step t, and T ∈ R∪{∞} is the set of time horizons.

The initial state S0 follows the initial distribution μ0 : S →
[0, 1]. Here, Π is the memoryless policy space.

B. Modeling Transit Route Choices with MDP

We can consider each traveler in public transit system,

as an “agent”, who completes a trip from origin to des-

tination by making a sequence of decisions about transit

modes and routes. Inherently, each passenger evaluates various

decision-making features associated with the current state and

each possible decision, such as travel time, cost, level-of-

convenience, by the traveler’s reward function. The reward

function represents the preference the traveler has over dif-

ferent decision-making features. Each traveler is making their

decisions that maximize the total “reward” she obtains out of

the trip. As a result, we model the travelers’ trips (i.e., their

transit route choices) using Markov Decision Process (MDP)

model. Below, we explain how each component in an MDP is

extracted from travelers’ transit trajectory data.

Agent: Instead of viewing each individual passenger as an

agent, we consider an agent as a group of passengers with

nearby source and destination locations. Since in reality, peo-

ple who live in the same residential community and working

in the same commercial area tend to have the similar income

level and family sizes, that likely lead to the similar preference

profile in public transit decision making [7]. Moreover, this

allows each agent (as a group of people) to have more

trajectory data to learn their preference as a reward function.

As we partition the entire urban area into small grids (in Stage

1), we consider all commute passenger trips with the same

original and destination grids a single agent.

State set S: Each state s ∈ S is a spatio-temporal region,

denoted as a tuple (g,Δt), where g represents a grid in the

urban area and Δt is a discrete time slot with a predefined

time interval. The state space S is thus finite, since the map

is partitioned into a finite number of grids (e.g., 1, 018 grids

in Fig 3) and each day is divided into 5-minutes intervals. For

Fig. 4. Illustration: transit choices as an MDP

an agent, with a starting grid gsrc, a destination grid gdst, and

a start time t0, the state space only includes a limited number

of spatio-temporal grids along the bus and subway lines from

gsrc to gdst. For example, in Fig 4, an agent travels from grid

gsrc to gdst, with two possible transfer grids (g1 and g2). If

there are three time intervals considered in the scenarios, each

grid is mapped to three MDP states, when combined with each

time interval, as shown as the overlapped squares in Fig 4.

Thus, there are in total 12 states in the example MDP.

Action set A: An action a ∈ A is a transit choice decision a

passenger can make when completing the trip, e.g., a certain

bus route or subway line with transfer stations. For example, in

Fig 4, the actions the passenger can make at state gsrc include

Bus#2 → g1 and Bus#1 → g2.

Transition probability function P : S × A × S → [0, 1]:
Due to the dynamics of urban road traffic and crowd flow

conditions, after an agent takes an action a (e.g., bus route)

at a state s, the time of reaching the transferring stop may

vary, leading to different state s′ (of the same spatial grid but

different time interval). Such uncertainty is characterized by

the transition probability function as P (s′ | s, a), representing

the probability of arriving at the state s′ after choosing

action a at the state s. The transition probability is obtained

from maximum likelihood estimation from real-world urban

transit trajectory data as follows. Suppose that we observed m
trajectories for an agent in the historical data. Each trajectory

ζ is represented as a sequence of discrete states and actions

ζ = {s0, a0, s1, a1, · · · , sN} where sN = (gdst,ΔtN ) is the

destination state and s0 = (gsrc,Δt0) is the source state.

With this information, the maximum likelihood estimator for

the transition (s, a) → s′ is obtained by P (s′ | s, a) =
N(s,a,s′)∑

s′∈S N(s,a,s′) , where N(s, a, s′) is the count of this transition

observed from all historical trajectories.

Reward R: When passengers make decisions of transit

choices, they are considering various decision making fea-

tures, such as travel time, cost, level-of-convenience. We will

detail these decision-making features in Sec IV-C. In MDP,

R : S × A → R represents the reward function. It captures

the unique personal preferences of an agent, that maps the

decision-making features (at a state s when taking an action

a) to a reward value. The decision making features include

travel time, cost, level-of-convenience, etc. We will discuss

these features in the next subsection in more details. Such
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reward function R(s, a) can be inversely learned from transit

trajectory data (See Sec V).

C. Decision-Making Features

Each state-action pair (s, a) is associated with a list of

features, represented as a vector f(s,a), that travelers consider

when making their transit decisions. We consider three types of

decision-making features, including monetary cost, time cost,

level-of-convenience.

Monetary Cost indicates how much the traveler needs to

spend if taking an action a at a state s, including fare and

remaining cost.

•Fare(F). At a state-action pair (s, a), the fare feature captures

the fare needed when taking an action a at a state s, e.g., the

fare for taking a bus route or a subway line.

•Remaining Cost(RC) captures the expected additional cost

needed (after taking a at s) before reaching the destination.

This feature can be viewed as a measurement of how cost-

efficient (s, a) is. For example, some action a taken at s, may

have a smaller fare feature, but may lead to a state s′, that

needs at least two or more transfers (i.e., no direct transit

option available at s′) to reach the destination, thus incurring

higher remaining cost.

Time Cost includes travel time (to the next state s′), remaining

time (to meet a deadline to reach destination), and traffic speed

(on road network at the current state s).

•Travel Time(TT) characterizes the expected travel time from

the current state s to the next state after taking an action a.

This feature value at a state-action pair (s, a) is estimated from

the historical transit trajectory data, and is averaged over all

possible next state s′ from (s, a).

•Remaining Time(RT): We observe that most of trips in

rush hours are commute trips between homes and working

places. The travelers may need to meet certain deadlines to

reach destinations. Such deadlines can be extracted from the

historical transit trajectory data and local news. The remaining

time feature captures the time difference between the current

state time and the deadline, indicating how urgent the trip is.

•Traffic Speed(TS) indicates the average road network traffic

speed in the grid and time interval of the current state s. This

feature captures the potential influence to the travel time if

an above-ground transit mode, e.g., a bus route, is chosen. We

observe that in general a traveler has a higher chance to choose

a nearby subway line if the current traffic speed is low.

Level of Convenience (LoC). Travelers may consider the

comfortableness and convenience of an action a made at state

s, i.e., number of transfers, number of choices, and transit

mode.

•Number of Transfers (NoT) represents the expected number

of transfers the traveler needs to take after taking action a at

state s, before reaching the destination.

•Number of Choices (NoC) captures the total number of transit

choices (including alternative bus routes, subway lines) the

traveler can choose at the current state s. This feature indicates

the flexibility the traveler has at a certain state s.

•Transit Mode (TM) is a binary indicator feature, indicating

if the chosen action is a subway (with TM = 1) or not.

V. STAGE 3: TRANSIT PLAN EVALUATION

With the MDP model to characterize the decision making

process of travelers, we are in a position to investigate how

we may evaluate human behaviors, e.g., ridership, of a transit

plan ΔG prior to its deployment. The idea is that deploying

a transit plan will change the existing transit graph G to

G′ = G∪ΔG, thus change the MDP with updated state space

S′ = S ∪ ΔS and action space A′ = A ∪ ΔA. However,

the unchanged element in MDP is the travelers’ preferences

(i.e., reward functions), namely, how they evaluate different

decision-making features to make transit choices. To evaluate

the human behaviors (i.e., ridership) of a transit plan ΔG, we

need to answer two questions:

Q1: Given the historical transit trajectory data of an agent

(collected prior to a transit plan deployment), how can we

learn the preference (reward) function R of the agent, that

maximizes the likelihood of the collected data being gener-

ated?

Q2: With the agents’ reward functions (learned from data

collected prior to the transit plan deployment), how can we

predict the future human behaviors, (e.g., ridership) of a new

transit plan, after it is deployed?

To answer Q1, we develop a novel preference learning

algorithm to extract the reward functions of agents (i.e.,

travelers) (Sec V-A). For Q2, we implement a policy iteration

algorithm to infer the travelers’ behaviors (as MDP policies)

from the updated MDP with new state and action spaces S′ and

A′ and the extracted traveler reward function R (See Sec V-B).

A. Preference Learning

User choice modeling and preference learning has been

extensively studied in literatures aiming to learn people’s

decision-making preferences from data they generated [8],

[9], [10]. Maximum-entropy inverse reinforcement learning

(MEIRL) [9] considers users making a sequence of deci-

sions in MDP, which matches our passenger decision-making

process well. However, MEIRL has a strong assumption

that reward functions are linear. Below, we develop a novel

preference learning algorithm to capture the general non-linear

reward function of travelers.

1) Passenger Preference Learning: Maximum entropy IRL

assumes each passenger reward function R(s, a) to be a linear

function to the feature vector f(s,a) at (s, a). Such strong

assumption limits its ability to accurately learn passengers’

preferences. In Sec VI, we show comparison results with

real world data between linear vs non-linear reward functions.

Now, we will first expand MEIRL to allow non-linear reward

functions, and then develop a computational efficient algorithm

to inversely learn a non-linear reward function R(s, a) that best

match the collected transit trajectory data.

Consider a general non-linear reward function R(s, a). With

the principle of maximum entropy, P (ζ), the probability of
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a trajectory ζ being generated, can be uniquely obtained by

solving the optimization problem below.

Problem P1 : max
P (ζ)

:
∑
ζ∈TR

P (ζ)(− lnP (ζ)), (1)

s.t.
∑
ζ∈TR

P (ζ) = 1, (2)

∑
ζ∈TR

P (ζ)R(ζ) = R̃. (3)

R̃ = 1
|T̃R|

∑
ζ∈T̃R R(ζ) represents the empirical average

reward of trajectories, with T̃R as the set of collected transit

trajectories (i.e., the sample space). The objective function

eq.(1) is the total entropy of the trajectory distribution. Con-

straint eq.(2) guarantees the total probability of all trajectories

equals 1. Constraint eq.(3) specifies that the expected trajec-

tory reward matches the empirical average trajectory reward R̃.

The close-form solution to the problem is P (ζ) = 1
ZR

eR(ζ),

with ZR =
∑

ζ∈TR eR(ζ), where TR is the set of all possible

transit trajectories in the MDP (i.e., the population space).

The proof of the solution is in the Appendix. Assume that

the reward function follows a non-linear model, e.g. Neural

Network, with parameter vector θ, i.e., R(s, a, θ). θ can be

estimated using maximum likelihood estimation, i.e., solving

the optimization problem below.

max
θ

: L(θ) =
∑

ζ∈T̃R

logP (ζ | θ) (4)

Then, a standard gradient decent method can solve it with

∇L(θ) =
∑

s∈S,a∈A

(
D∗(s, a)−D(s, a, θ)

)∂R(s, a, θ)

∂θ
, (5)

where D∗(s, a) = Ñ(s,a)/|T̃R| and Ñ(s,a) is the count

from all transit trajectories that traverse the station-action pair

(s, a). So, D∗(s, a) is the empirical state-action pair visitation

frequency. Similarly, D(s, a, θ) is the estimated state-action

pair visitation frequency under a given reward function θ.

The proof of eq.(5) is delegated to Appendix. Clearly, at i-th
iteration, the state-action pair visitation frequency D(s, a, θi)

and the partial derivative
∂R(s,a,θi)

∂θi
are required when updating

θi+1 = θi + α · ∇L(θ), where α is the step size for updating

θ. As a result, this approach only works for models that allow

computing
∂R(s,a,θ)

∂θ , such as neural network (with backward

propagation), linear regression. Models, such as decision tree,

random forest, cannot be applied as reward function models,

since no derivatives can be computed. Moreover, mini-batch

gradient decent approach cannot be applied, since each itera-

tion requires updating visitation frequencies for all state-action

pairs. To tackle these challenges, we employ the following

observation (Theorem 1) to further improve the flexibility of

the non-linear preference learning algorithm. For brevity, the

proof of Theorem 1 is delegated to the Appendix.

Theorem 1. The optimization problem P1 is equivalent to the
problem P2 below. They share the same optimal solution.

Problem P2 : max
θ,R∗

:
∑

ζ∈T̃R

log
1

ZR
eR

∗(ζ), (6)

s.t.
∑

ζ∈T̃R

(R∗(ζ)−R(ζ, θ))2 ≤ ε, (7)

where R∗(ζ)’s are the reward values received, that best
describe the demonstrated trajectory data, and ε > 0 is a
sufficiently small value.

Problem P2 can be decomposed into two subproblems as

follows.

Subproblem 2-1 : max
R∗(ζ)

∑

ζ∈T̃R

log
1

ZR
eR

∗(ζ), (8)

Subproblem 2-2 : min
θ

∑

ζ∈T̃R

(R∗(ζ)−R(ζ, θ))2. (9)

From Subproblem 2-1, it is easy to prove that R∗(s, a)
can be learned with gradient decent, with ∇L(R∗(s, a)) =
D∗(s, a)−D(s, a), and R∗(s, a) represents the reward value

received at a state-action pair (s, a). Then, R∗(s, a) can be

used as input of Subproblem 2-2 to solve an optimal model pa-

rameter θ. Here, the subproblem 2-2 can be viewed and solved

using supervised learning approach, which is compatible with

any supervised model. Alg 1 presents the pseudo-code of the

passenger preference learning algorithm. Line 4–5 update the

state-action pair visitation frequency using Alg 2. Line 6–8

update R∗(s, a) with gradient decent method. Line 9 builds

a supervised machine learning model using vector f(s,a) as

features, and R∗(s, a) as labels. Alg 2 computes the optimal

policy π(s, a) with policy iteration, and calculates the state-

action pair visitation frequency by solving a group of linear

equations in eq (10) and eq (11).

D(s)−
∑
s′∈S

∑
a′∈A(s′)

D(s′, a′) · P (s | s′, a′) = u0(s), ∀s ∈ S,

(10)

D(s, a) = D(s)π(s, a), ∀(s, a) ∈ (S,A), (11)

where D(s) =
∑

a∈A(s) D(s, a) represents the state visitation

frequency, namely, the likelihood of visiting the state s, if a

random trajectory is generated. u0(s) is the initial distribution.

B. Transit Plan Evaluation

Given a new transit plan ΔG = (ΔV,ΔE), e.g., a new

subway line or bus route, the new state and action spaces are

S′ = S ∪ ΔS and A′ = A ∪ ΔA, respectively. With the

passenger preference function R(s, a), the updated MDP with

new transit plan is represented as 〈S′, A′, P,R(s, a), γ〉, where

transition probability matrix P is considered unchanged, and

discount factor γ = 1. With such a new MDP, we can apply

Alg 2 to extract the optimal policies π(s, a) passengers will

employ, D(s) state visitation frequency, D(s, a) state-action
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Algorithm 1 Preference Learning

1: INPUT: MDP M ,trajectories T̃R and learning rate α, f(s,a);
2: OUTPUT: Preference function R∗(s, a);
3: Initialize R∗

0(s, a); i = 1;
4: while ‖∇L(R∗(s, a))‖2 > ε do
5: update D(s, a) with R∗

i−1(s, a) using Alg 2;
6: update ∇L(R∗(s, a)) = D∗(s, a)−D(s, a);
7: R∗

i (s, a) = R∗
i−1(s, a) + α ∗ ∇L(R∗(s, a));

8: i++;

9: Train a model R(s, a, θ) with features f(s,a) and labels
R∗

i−1(s, a);
10: return R∗(s, a), R(s, a, θ) and θ;

Algorithm 2 Computing State-Action Visitation Frequency

INPUT: MDP = 〈S,A, P,R(s, a), 1〉;
2: OUTPUT: State-action pair visitation frequency D(s, a);

Solve optimal policy π(s, a) from MDP with policy itera-
tion [6];

4: Solve D(s, a) from eq (10) and eq (11);
return D(s, a);

pair visitation frequency. These statistics can evaluate many

aspects of the new transit plan ΔG, including the ridership

of new transit lines, and crowd flow at different regions over

time.

Ridership of new transit lines. To evaluate the ridership of a

new transit plan at a certain station, we denote (se, ae) as the

state-action pair of our interests. State se corresponds to the

grid with the station to be evaluated. Recall that we consider

all trips with the same source-destination grid pair as an agent.

Let M denote the total number of agents in the urban area of

our interests. For each agent 1 ≤ i ≤ M , we denote ni as the

number of passengers in the agent i. we apply Alg 2 to extract

the state-action pair visitation frequency Di(se, ae) for agent i
at the state-action pair (se, ae). As a results, Rider(se, ae) =∑M

i=1 Di(se, ae) · ni represents the total ridership getting on

the new transit line ae from state se.

Crowd flow in a grid. Similarly, to predict the total crowd

flow at a grid g during certain time interval Δt, let se =
(g,Δt) denote the corresponding state in MDP. We calculate

the state visitation frequency D(se) over all M agents. The

crowd flow at state se can be estimated as Crowd(se) =∑M
i=1 Di(se) · ni.

VI. EVALUATIONS

There were three new subway lines opened between

6/01/2016 and 12/31/2016, i.e., Line #11 on June 28, 2016,

Line #7 and #9 on October 28, 2016. To test our human-

centric transit plan evaluation algorithm, we use data prior to

the deployment to build models and predict the ridership of

those new subway stations, and validate the prediction results

with the data collected after their deployment.

A. Baseline methods

We conduct two sets of experiments: (i) compare reward

learning (Subproblem 2-1 in eq.(8) with other inverse learning

baselines; (ii) compare ridership prediction (Subproblem 2-2
in eq.(9) with other baseline frameworks.

Baselines for reward learning.
Our Method: Inverse Reinforcement Learning with Sub-

optimal Policy(IRL+SP) (Line #1–#8 in Alg 1). It chooses

the reward function with the principle of maximum entropy,

and assumes that human make decisions with softmax-based

suboptimal policies [9].

Baseline 1: Inverse Reinforcement Learning with Optimal
Policy (IRL+OP). This baseline assumes that human decision-

making follows an optimal deterministic policy, which means

at each state, there is only one action being taken.

Baseline 2: Apprenticeship Learning (AL) [11]. This base-

line chooses reward functions maximizing the reward gap

between the best and second best policy. It assumes that

passengers take optimal deterministic policy.

Baselines for ridership prediction.
Our Method: Alg 1 combined with multiple machine learn-

ing models at Line #9, such as random forest, lasso regression,

and linear regression.

Baseline 1: Machine Learning Models (ML). We directly

train machine learning models to predict the ridership.

Baseline 2: Multinomial Logit (MNL) Model [12] This

baseline considers each passenger make a single decision of

the entire trip trajectory, rather than a sequence of decisions.

MNL is used for the reward learning, where the preference

learning still employs different machine learning models.

B. Experiment settings

We use stopping criteria as ε1 = 10−12 for Gradient Decent,
and employ the following two metrics to evaluate the reward

learning and ridership prediction.

Visitation frequency difference. During the reward learning

process, we not only extract reward values R∗(s, a) that best

match the demonstrated trajectory data, but also obtain the

state-action pair visitation frequency D(s, a) for each state-

action pair. It can be expressed as a visitation frequency

vector D = [D(s, a)]. Likewise, we can obtain an empirical

state-action pair visitation frequency vector D̃ = [D∗(s, a)]
from the transit trajectory data. Each D∗(s, a) represents the

percentage of collected trajectories that went through (s, a).
The visitation frequency difference is the 2-norm difference

of the two vector D and D̃, which characterizes how accurate

the learned reward values are.

Ridership Prediction Error. Given a new subway station of

a new transit plan (i.e., a subway line), which is within a grid

g, denote s as a state over the grid g. The new transit line

is considered as an action a. Let N(s, a) be the number of

passengers taking the new transit line a at state s after the

new line is opened, which can be obtained from the data.

Denote N ′(s, a) as the predicted ridership at state s, taking

transit line a. The Ridership prediction error is quantified

as |N(s, a) − N ′(s, a)|/N(s, a). The prediction N(s, a) is

ridership of (s, a), which is
∑M

i=1 Di(s, a) · ni, the sum of

ridership prediction for all related agents, where M is total
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number of agents visiting (s, a) and ni is the amount of

passengers in agent i.

C. Preference Learning

We compare our preference learning method IRL+SP with

two baseline methods, including IRL+OP and AL.

The Fig 5 clearly indicates that our IRL+SP algorithm out-

performs baseline methods on visitation frequency difference.

After convergence, our IRL+SP method leads to the lowest

ridership vector difference, around 3× 10−12, where IRL+OP

and AL have visitation frequency vector differences as high

as 0.023 and 0.3, respectively. Such results indicate that

passengers make sub-optimal decisions, rather than optimal

decisions. In terms of convergence rate, Fig 5 shows that both

IRL-SP and IRL-OP methods converge fast in 30 iterations,

while AL method fluctuates over iterations.

Fig 6 shows how many iterations to converge with our

IRL-SP algorithm (Alg 1) over stopping criteria ε, ranging

from 10−1 to 10−20. The results are promising: Less than 1K

iterations are needed to achieve a stopping criteria of 10−10.

It is also worth of mentioning that both IRL+OP and

IRL+SP work in linear fashion, so their running time is similar

to each other. When we set the convergence stopping criteria

as ε = 3 × 10−12. It takes about 1 minutes to converge for

one agent.

D. Ridership Prediction

We evaluate the accuracy and efficiency of our proposed

algorithm in predicting the ridership of a new transit plan.

Prediction accuracy. Table I shows relative errors in ridership

prediction for a new transit plan, when comparing with differ-

ent baselines. Clearly, our IRL-SP Algorithm (when combined

with Random Forest (RF) model at Line #9 in Alg 1) yields the

lowest prediction relative error, about 19.8%. IRL-SP based

models (right-most column) have the lowest overall errors

comparing machine learning models and multinomial logit

models. This indicates that passengers are making a sequence

of decisions rather than one decision when planning their

trip demands. Moreover, the linear models (ML+LR, MNL

and IRL+LR) shown in the first row have relative errors

about 36%–49%, much higher than other non-linear models.

This indicates that passengers are evaluating various decision-

making features in a non-linear fashion. On the other hand,

random forest based models outperform linear models and

Lasso based models.

TABLE I
RIDERSHIP PREDICTION ERROR

ML MNL IRL+SP
Linear 0.4337 0.3684 0.4879
Lasso 0.3665 0.3214 0.3126

Random Forest 0.3306 0.3152 0.1982

Impact of training data size. Fig 7 shows how the ridership

prediction relative error changes over the amount of training

data we use. We change the size of training data from 1

day data to 6 days data. The relative errors of all approaches

decrease (slowly) when more training data are included.

Impact of stopping criteria ε. Fig 8 shows how the relative

errors change with different stopping criteria ε of Alg 1,

ranging from 10−1 to 10−25. The relative error goes down

as ε decreases for IRL with RF, where it keeps unchanged

for IRL with LR and Lasso. Moreover, when ε is lower than

10−12, the relative error remains stable. As a result, we choose

ε = 10−12 in our experiments.

Impact of grid size. Fig 9 shows the prediction relative error

changes over the grid size. We vary the grid side-length from

50m to 500m, and observe that 250m yields the lowest relative

error. This can be explained as follows: If the grid size is

too small, there will be fewer stations in each grid, thus less

trajectories aggregated in each grids. Such sparse data lead

to high prediction error. On the other hand, with larger grids,

more trajectories and stations will be aggregated, and different

decision choices from passengers will be mixed together, thus

increase the prediction error.

Impact of different agents. We apply all baseline algorithms

to different agents, compare their prediction relative errors.

Fig 10 shows the comparison results on five randomly chosen

agents. It is clear that for all five agents, the orders of different

baselines in prediction errors are consistent, i.e., (i) IRL based

models out perform ML and MNL based models, (ii) non-

linear models performs better than linear models.

E. Case studies

Now, we show three agents (group of passengers) as ex-

amples, which have significantly different reward functions.

Fig 11 (A)-(C) show the locations of the source and destination

grids, and their preferences to eight features.

Fig 11(A) represents travelers from Baoan to Xili. Baoan

is a residential area with low housing prices, where there

are many manufacture factories in Xili. So the commuters

from Baoan to Xili are likely workers with low income,
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which explains why their weights to fare and remaining

cost are higher. Moreover, factories in Xili usually require

their employees to follow fixed schedules. As a result, their

preference to remaining time is much higher than other agents.

Fig 11(B) shows the traveler group from Meicun to Xiasha.

Meicun, as a residential area, has high housing prices, where

there are many technology companies, with high salary and

flexible working schedule. These observations explain the

preferences extracted, i.e., they weigh travel time highly while

weighing the fare, remaining cost, and remaining time lower.

Fig 11(C) presents passenger group from Hezhou to

Gaoxinyuan (High-Tech Park). Hezhou has lower housing

price, and is in rural area away from Gaoxinyuan. Hence, pas-

sengers are more likely with low income level. This matches

the preference weighing more on fare and less on travel time.

VII. RELATED WORK

In this section, we summarize the literature works in two

related areas to our study: 1) urban computing, and 2) user

choice modeling.

Urban Computing. Urban computing integrates urban sens-

ing, data management and data analytic together as a unified

process to explore, analyze and solve existing critical problems

in urban area such as traffic congestion, energy consumption

and pollution[13], [14], [15], [16]. In [17], the authors propose

an dynamic urban transit system with shared shuttles using

hybrid hub-and-spoke mode. The authors in [18] employ real

world trajectory data of sharing bikes to develop bike lane

planning strategies. In [19], [20], the authors detect urban

events from heterogeneous urban datasets. However, none of

those works have explicitly studied the “urban human factors”,

i.e., how people make decisions. Our work is the first study

investigating how to quantify human preferences, and consider

such preferences in urban transit planning.

User Choice Modeling. User choice modeling has been

extensively studied in the literature with applications, which

investigate how users make decisions in various application

scenarios. For examples, In [21], they use random utility

maximization and random regret minimization to analyze

users’ choice on park-and-ride lots. In [12], authors estimate

a multinomial discrete choice model and a latent variable

model of travel mode choice. In [9], the authors propose a

probabilistic approach to discover reward function for which

a near-optimal policy closely mimics observed behaviors.

However, differing from these works, we employ data-driven

approaches to study the unique decision-making process of

urban public transit passengers.

VIII. CONCLUSION

In this paper, we introduce a novel transit plan evaluation

framework that can evaluate ridership and crowd flow of a

new transit plan before its deployment. In this framework,

we develop a preference learning algorithm to inversely learn

the passengers’ preference functions when making transit

decisions, and predict future human behaviors of a new transit

plan. Our extensive evaluation results using real-world data

demonstrated that our framework can predict the ridership with

only 19.8% relative error, which is 23%-51% lower than other

baseline approaches.
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APPENDIX

A. Solution to Problem P1
Lemma 1. The close-form solution for P1 (eq.(1)–(3)) is
P (ζ) = 1

ZR
eR(ζ), with ZR =

∑
ζ∈TR eR(ζ) and TR as the

set of all possible trajectories.

Proof. Denote P (ζ) as the distribution of the trajectories

generated by an agent with its optimal policy. We collected a

sampled trajectory set T̃R = {ζ} from the agent. Problem P1

above is used to estimate the distribution P (ζ), so it matches

the dataset T̃R well, with a maximum entropy. The Lagrange

function of P1 is represented as eq.(12).

L(P (ζ)) =
∑
ζ∈TR

−P (ζ)ln(P (ζ) + λ1

( ∑
ζ∈TR

P (ζ)− 1
)

+ λ2

( ∑
ζ∈TR

P (ζ)R(ζ)− R̃
)

(12)

Taking the derivative of L(P (ζ)) with respect to P (ζ), we

obtain
∂L(P (ζ))
∂P (ζ) = 1 − ln(P (ζ)) + λ1 + λ2R(ζ). When the

derivative
∂L(P (ζ))
∂P (ζ) = 0, we have P (ζ) = e1+λ1 ·eλ2R(ζ). λ2 is

called “temperature” [6] used to quantify the degree to which

the agent follows a sub-optimal policy vs a global optimal

policy. Without loss of generality, we can set λ2 = 1. More-

over, given the second constraint
∑

ζ∈TR P (ζ) = 1 (from

eq.(3)), we can obtain e1+λ1 = 1/ZR = 1/
∑

ζ∈TR eR(ζ),

which completes the proof.

B. Solution to Problem in eq.(4)

Lemma 2. The gradient to the Lagrange function in eq.(4)
(with respect to θ) is ∂L(θ)

∂θ =
∑

s∈S,a∈A

(
D∗(s, a) −

D(s, a, θ)
)∂R(s,a,θ)

∂θ , where D∗(s, a) = Ñ(s,a)

|T̃R| .

Proof. First of all, the Lagrange function of P2 is represented

as L(θ) =
∑

ζ∈T̃R log
(

1
ZR

eR(ζ,θ)
)
. Taking the derivative of

L(θ) with respect to θ, we can complete the following results.

∂L(θ)

∂θ
=

∂

∂θ

∑

ζ′∈T̃R

(
R(ζ ′, θ)− log

∑
ζ∈TR

eR(ζ,θ)
)

= |T̃R| ·
( ∑

ζ′∈T̃R

1

|T̃R|
∂R(ζ ′, θ)

∂θ
−

∑
ζ∈TR

P (ζ, θ) · ∂R(ζ, θ)

∂θ

)

= |T̃R| ·
( ∑

s∈S,a∈A

(
D∗(s, a)−D(s, a, θ)

)∂R(s, a, θ)

∂θ

)

When taking the derivative equal to 0, i.e.,
∂L(θ)
∂θ = 0, the

constant |T̃R| can be removed.

C. Proof of Theorem 1

Proof. Denote Lagrange function of P1 and P2 as L1(θ) and

L2(R
∗(ζ), θ), respectively.

∂L1(θ)
∂θ is clearly eq.(5), which can

be rewritten as follows, with P̃ (ζ) be the empirical probability

of trajectory ζ to occur.

P1 :
∂L1(θ)

∂θ
=

∑

ζ∈T̃R

(
P̃ (ζ)− P (ζ, θ)

)∂R(ζ, θ)

∂θ
= 0.

Similarly, the partial derivative of L2(R
∗(ζ), θ) is

P2 :
∂L2(R

∗(ζ), θ)
∂θ

=
∑

ζ∈T̃R

(
R∗(ζ)−R(ζ, θ)

)∂R(ζ, θ)

∂θ
= 0.

P (ζ, θ) = 1
ZR

eR(ζ,θ), with ZR =
∑

ζ∈TR eR(ζ,θ), and

P̃ (ζ) = 1
Z̃
eR

∗(ζ) with Z̃ =
∑

ζ∈T̃R eR
∗(ζ). Obviously, P2

is seeking for a R(ζ, θ) that is equal to R∗(ζ), which means

that ZR = Z̃. It is thus equivalent to P (ζ, θ) = P̃ (ζ), which

is the solution from problem P1 and completes the proof.
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